
Primal-Dual Interior Point Methods for Linear Programs

CS 520: Computational Methods in Optimization
Prof. David Gleich

Ishaan Saxena
isaxena@purdue.edu

In this project, I will study and implement a solver for Linear Programs in Julia using primal-
dual interior point methods. In particular, I will look at the behavior of some path-following
primal-dual methods, and will implement one or two such algorithms. This report will describe
the relevant details of the project, the implementation, and the theory behind primal-dual
interior point method which is utilized in the project.

1 Introduction

Consider a linear programming problem in the standard form. The primal and dual formulations
for such a problem are given as follows:

P =

minimize

x
cTx

subject to Ax = b

x ≥ 0

(1.1a)

D =

maximize

λ,s
bTλ

subject to ATλ+ s = c

s ≥ 0

(1.1b)

where c,x, s ∈ Rn, λ,b ∈ Rm, and A ∈ Rm×n is a matrix with full row rank. It is easy to show
that the solution to such a problem is characterized by the Karush-Kuhn-Tucker (KKT) conditions
(Nocedal & Wright, 2006, Chapter 13), which are:

ATλ+ s = c, (1.2a)

Ax− b = 0, (1.2b)

xT s = 0, (1.2c)

x, s ≥ 0 (1.2d)

1

mailto:isaxena@purdue.edu

Primal-dual methods find the solution (x∗,λ∗, s∗) iteratively by applying variants of Newton’s
method to the three equality conditions as mentioned above to find search directions and use step
lengths such that the inequality constraint is satisfied strictly in every iteration (Wright, 1997,
Chapter 1).

1.1 Optimality Conditions as Non-Linear Equations

The KKT conditions can be restated into the following set of non-linear equations:

F (x,λ, s) =

ATλ+ s− c
Ax− b
XSe

 =

 rc
rb
rxs

 = 0 (1.3a)

(x, s) ≥ 0 (1.3b)

where X = diag(x), S = diag(s), and e is a vector of all ones. To solve such a system, we can use
Newton’s Method. As a result, we obtain the following system of linear equations:

J(x,λ, s)

px

pλ

ps

 = −F (x,λ, s) (1.4)

where J is the Jacobian of F . Assuming our current point is strictly feasible, this gives us: 0 AT I
A 0 0
S 0 X

px

pλ

ps

 =

 0
0
−rxs

 (1.5)

Solving this system gives us the search direction (px,pλ,ps). As a result, we obtain the following
iterate:

(x,λ, s) + α(px,pλ,ps)

For some line search step length α ∈ (0, 1].

1.2 Drawbacks of Pure Newton’s Method and Modifications

Recall the iterate we obtain with the basic Newton’s method:

(x,λ, s) + α(px,pλ,ps)

The new iterate obtained from this method satisfies the constraints given in (1.2a), (1.2b) for any
values of α. This is easily verifiable with some basic calculuations. However, it is the condition
(x, s) ≥ 0, which is slightly more challenging to deal with. Note that this condition implies that
xT s ≥ 0. As a result, we obtain on the new iterate:

(x+ αpx)
T (s+ αps) ≥ 0

xT s+ α(pT
x s+ pT

s x) + α2pT
xps ≥ 0

(1− α)xT s+ α2pT
xps ≥ 0

2

As such, the value of α is bound by this inequality. It turns out that the pure Newton’s method
allows only a very small step before the strict inequality constraint is violated, hence, we do not
make much progress towards a solution (Wright, 1997, Chapter 1).

To fix this problem, primal-dual interior point methods make modifications to the basic Newton
method in two important ways (Wright, 1997, Chapter 1):

1. They bias the search direction towards the interior of the negative orthant (x, s) ≥ 0 such
that we can move further along the search direction before the non-negativity constraint is
violated.

2. They keep the components of (x, s) from moving too close to the boundaries of the feasible
polytope without making much progress towards the solution.

2 Log-Barrier Terms to Modify LPs

Consider the following modification to our standard linear program:

minimize cTx+ b(x; τ) subject toAx = b (2.1)

where b(x; τ) = −τ
∑

i log xi.

Note that as xi → 0, we have − log(xi) → ∞. As a result, given some positive τ , the function
b(x; τ) creates a ”barrier” for the optimization problem. If we get closer to zero, the value of
cTx + b(x; τ) spikes. As a result, to find a minimizer, we must ensure that xi > 0, satisfying the
initial non-negativity constraint.

Furthermore, note that we have b(x; τ)→ 0 as τ → 0. This indicates that, the smaller the value of
τ gets, the closer cTx + b(x; τ) gets to cTx. This means that at small values of τ , the log-barrier
function b can generate approximations of the solution to the linear program, with smaller values
of τ giving better approximations.

It is also important to note that cTx+b(x; τ) is strictly convex, which indiciates that the optimality
conditions are both necessary and sufficient. To find these optimality conditions, let’s find the
Lagrangian.

The Lagrangian for this optimization problem is:

L(x,λ) = cTx− τ
∑
i

log xi − λT (Ax− b) (2.2)

As such, the optimality conditions are:

c− τX−1e−ATλ = 0 (2.3a)

Ax− b = 0 (2.3b)

Since the non-negativity condition will be satisfied given this formulation of a linear program, we
can obtain the KKT conditions in (1.2) by enforcing:

τX−1 = S (2.4)

with the only difference being that here we require a strict inequality instead for (x, s) > 0, and
that xisi = τ , not 0.

3

3 The Central Path

The primal-dual feasible set F and strictly feasible set F0 are defined as follows:

F = {(x,λ, s)|Ax = b,ATλ+ s = c, (x, s) ≥ 0} (3.1a)

F0 = {(x,λ, s)|Ax = b,ATλ+ s = c, (x, s) > 0} (3.1b)

The central path arc C is an arc of strictly feasible points parameterized by the scalar τ > 0 such
that each point (xτ ,λτ , sτ) ∈ C satisfies the optimality conditions for the reformulation of the linear
program with a log-barrier term. That is:

ATλ+ s = c, (3.2a)

Ax− b = 0, (3.2b)

xisi = τ, (3.2c)

x, s > 0 (3.2d)

As a result, we can define C with the mapping F : R2n+m → F : R2n+m defined in (1.3a) as follows:

F (xτ ,λτ , sτ) =

 0
0
τe

 , (xτ , sτ) > 0 (3.3)

It can also be shown that (xτ , sτ) is unique for each value of τ > 0 if the linear program is feasible
(F0 is nonempty) (Wright, 1997, Chapter 2). This indicates that as τ → 0, C converges to a
primal-dual solution of the linear program. Thus, the central path guides us to the solution while
maintaining (x, s) > 0 and decreasing xisi = τ at the same rate.

As a result, we can modify our primal-dual interior point algorithm to take Newton steps towards
points on C where τ > 0 instead of taking pure Newton steps. Since these steps are biased towards
the nonnegative orthant (x, s) ≥ 0, we can take longer steps and make more significant progress
before we would violate the positivity constraint.

3.1 Modified Search Directions

To describe this biased search directions, we introduce the following two terms:

1. the centereing parameter σ ∈ [0, 1],

2. the duality measure µ:

µ =
1

n

∑
i

xisi =
1

n
xT s =

τ

n
(3.4)

We use the following equations given these parameters to find the search direction for our current
iterate (assuming the current point is feasible): 0 AT I

A 0 0
S 0 X

px

pλ

ps

 =

 0
0

−rxs + σµe

 (3.5)

4

With these equations, setting σ = 1 defines a centering direction, in which the Newton step is
towards a point in the central path with the same duality measure. On the other hand, σ = 0, we
obtain the affine-scaling direction, in which the Newton step is the one which reduces the duality
measure the most. It is important to note for the duality measure that:

µ =
1

n
xT s =

1

n
(cTx− bTλ) (3.6)

As such, the more the duality measure is reduced, the closer we are to the optimum solution.
Hence, in order to obtain the solution and make significant progress towards it at each step, we
must make a trade off between reducing µ (smaller σ value) and staying close to the central path
(larger σ value). This choice of σ value is, as a result, very important to the primal-dual interior
point algorithm.

3.2 A Basic Framework for Primal-Dual Interior Point Methods

With the information we have obtained regarding the modified search direction with respect to
the central path, we can obtain the following general framework for primal-dual interior point
algorithms (Wright, 1997, Chapter 1):

Algorithm 1 Primal-Dual Interior Point Framework

Given: (x0,λ0, s0) ∈ F
for k = 0, 1, 2... do

choose centering parameter σk ∈ [0, 1]
solve equations in (3.5) to obtain search directions px,pλ,ps

choose step length αk

(xk+1,λk+1, sk+1)← (xk,λk, sk) + αk(px,pλ,ps)
end for

4 Path-Following Methods

Path-following methods1 follow the central path C in the direction of decreasing τ in order to reach
the solution set for the primal-dual problem. While the iterates do not stay exactly on C, they are
explicitly restricted to a well-defined neighborhood of it. Each search direction is, as previously
discussed, a Newton step towards a point on C, for which the duality measure τ is less than or same
as the current duality measure µ. The target value τ = σµ is used where σ ∈ [0, 1] is the centering
parameter (Wright, 1997, Chapter 5).

Before we discuss some path-following methods in depth, let’s introduce the notion of central path
neighborhoods.

1For the rest of this project, I will restrict my focus to only path-following methods. While potential-reduction
algorithms are an interesting topic for delibration, they utilize the central path neighborhoods only implicitly; I seem
to be more interested in the workings and nature of path following methods.

5

4.1 Central Path Neighborhoods

Recall the optimality conditions for the log-barrier formulation of the stanard form linear program
as described in equations (3.2) which define points on the central path parameterized by τ . Path-
following algorithms generate iterates (xk,λk, sk) ∈ F0. However, these deviate from points on the
central path C since the pairwise products xisi do not generally match. As such, they satisfy all
conditions in (3.2) except (3.2c).

In order to prevent premature jumps towards the boundary of the nonnegative orthant, we can
define a measure for such deviation by comparing the pairwaise products to the duality measure µ
(which refers to the average value of the pairwise products) with the following scaled norm (Wright,
1997, Chapter 5):

1

µ
||XSe− µe||p (4.1)

Now, suppose that the ith component of either x or s is zero. This indicates that:

1

µ
||XSe− µe||p ≥

1

µ
|xisi − µ| = 1 (4.2)

Thus, to ensure strict positivity of both x and s, we can restrict the scaled norm deviation from a
point on the central path to a strict upper bound of 1. This gives us the p-Neighborhood of C:

Np(θ) = {(x,λ, s) ∈ F0 | ||XSe− µe||p ≤ θµ} (4.3)

where θ ∈ [0, 1). The most commonly utilized of such neighborhoods is the N2 neighborhood with
θ typically set to 0.5 (Nocedal & Wright, 2006, Chapter 14).

However, N2 can prove to be very restrictive in its nature. Note that for x,λ, s ∈ N2(θ):{∑
i

(xisi − µ)2 ≤ θ2µ2

}
⇒

{∑
i

(
xisi
µ
− 1

)2

≤ θ2 < 1

}
(4.4)

This indicates that the sum of all squared relative deviations cannot exceed 1 even if θ is set close
to its upper bound. As a result, such a neighborhood may capture only a very small portion of the
strictly feasible set F0. To allow for a more expansive neighborhood, in addition to neighborhoods
based on the norm deviations, we can also define the N−∞ neighborhood as follows (Wright, 1997,
Chapter 5):

N−∞(γ) = {(x,λ, s) ∈ F0 | xisi ≥ γµ ∀i} (4.5)

where γ ∈ (0, 1]. If a point lies in this neighborhood, each pairwise product xisi must be at
least some small multiple of the duality measure, thus, preventing premature jumps towards the
boundary of the nonnegative orthant.

The path-following methods we will now discuss follow the framework described in Section 3.2.
These methods choose either N2 or N−∞ and then choose the centering parameter σk and step
length αk such that each iterate stays within the chosen neighborhood. By keeping all iteratres
within the same neighborhood, such methods prevent them from coming too close to the boundary
of the nonnegative orthant, therby ensuring nontrivial steps along the search direction to reduce all
pairwise products at a similar rate.

6

4.2 Path-Following Algorithms Based on Central Path Neighborhoods

4.2.1 Short-Step Path-Following Algorithm

The short-step path-following algorithm, as described by Monteiro and Adler in their 1989 paper,
is a variant of the basic primal-dual path-following paradigm we have discuessed. Given some fixed
values for θ, δ satisfying

0 ≤ θ < 1

2
, 0 < δ <

√
n, (4.6a)

θ2 + δ2

2(1− θ)
≤ θ

(
1− δ√

n

)
, (4.6b)

where n is the number of columns in the constraint matrix A, this algorithm starts at a point
(x0,λ0, s0) ∈ N2(θ), and uses uniform values α = 1 and σ = 1− δ/

√
n for each iterate.

With this procedure for choosing the centering parameter σk and step length αk, each iterate
(xk,λk, sk) stays within the chosen neighborhood of the central path, and the duality measure µk

converges linearly to zero at a rate 1− σ (Monteiro & Adler, 1989, Sections 3 and 4).

This algorithm is as follows:

Algorithm 2 Short-Step Path-Following Algorithm

Given: some θ, δ satisfying (4.6) and (x0,λ0, s0) ∈ N2(θ)
set centering parameter σ = 1− δ/

√
n

for k = 0, 1, 2... do
solve equations in (3.5) to obtain search directions px,pλ,ps

(xk+1,λk+1, sk+1)← (xk,λk, sk) + (px,pλ,ps)
end for

If the starting point µ0 ∈ N2(θ) such that, for some ε > 0, µ0 ≤ 1/εκ (given some positive constant
κ), then this algorithm takes K = O(

√
n log 1/ε) iterations to reach µk ≤ ε for all k ≥ K (Wright,

1997, Theorem 5.2).

This algorithm is globally convergent (Wright, 1997, Lemma 5.1). However, the duality measure
converges to zero only at a linear rate. Furthermore, this algorithm uses a constant value for the
centering parameter and step length at every iteration, and thereby lacks adaptivity in choice of
these parameters.

4.2.2 Predictor-Corrector Algorithm

The Predictor-Corrector Algorithm (Mizuno, Todd, & Ye, 1993, Section 3) is a variant of the
primal-dual path-following methods wherein it takes the following alternating steps:

1. predictor step (σ = 0) to reduce the duality measure,

2. corrector step (σ = 1) to improve centrality.

7

It utilizes a pair of nested neighborhoods N2(0.25) and N2(0.5) such that, given a starting point in
the inner neighborhood, each iterate generated by the corrector step is restricted to the first, and
each iterate generated by the predictor step is restricted to the second. As a result, the predictor
step reduced the duality measure µ by a factor of (1 − α), where α is the step length, whereas
the corrector step merely brings the iterate back to a point on the central path C with the same µ
(Wright, 1997, Chapter 5).

This algorithm is as follows:

Algorithm 3 Predictor-Corrector Algorithm

Given: (x0,λ0, s0) ∈ N2(0.25)
for k = 0, 1, 2... do

if k is even then . predictor step
σk ← 0
solve equations in (3.5) to obtain search directions px,pλ,ps

choose αk ∈ (0, 1] such that:

maximize α (4.7a)

subject to (xk(α),λk(α), sk(α)) ∈ N2(0.5) (4.7b)

(xk+1,λk+1, sk+1)← (xk,λk, sk) + α(px,pλ,ps)
else . corrector step

σk ← 1
solve equations in (3.5) to obtain search directions px,pλ,ps

(xk+1,λk+1, sk+1)← (xk,λk, sk) + (px,pλ,ps)
end if

end for

Furthermore, it can be shown that equations (4.7) have a satisfactory analytic bound. Suppose the
current iterate (x,λ, s) ∈ N2(0.25). If choose α which satisfies

α = min

{
1

2
,

(
µ

8||P xP se||

)1/2
}

(4.8)

where P x = diag(px) and P s = diag(ps), then we can ensure that (xk(α),λk(α), sk(α)) ∈ N2(0.5)
for all α ∈ [0, α] (Mizuno et al., 1993, Lemma 4). We can go one extra step to show that (Wright,
1997, Lemma 5.4):

µ

8||P xP se||
≥ 0.16

n
⇒ α ≥ 0.4√

n
(4.9)

If the starting point µ0 ∈ N2(0.25) such that, for some ε > 0, µ0 ≤ 1/εκ (given some positive
constant κ), then this algorithm takes K = O(

√
n log 1/ε) iterations to reach µk ≤ ε for all k ≥ K

(Wright, 1997, Theorem 5.9).

This algorithm is globally convergent and does so at a superlinear rate (Wright, 1997, Theorem
7.7). It is a definite improvement over the short-step path-following method, insofar as it is more

8

adaptive due to its built in choice of σ at each step. This allows it to take larger steps in order to
reduce µ in the predictor cycles, and maintain centering at the corrector cycles.

Despite its adaptivity, however, it is still restricted to the N2 neighborhood of the central path.
This means that it cannot make significant progress during the initial steps of the algorithm when
we are quite far from a solution.

4.2.3 Long-Step Path-Following Algorithm

Instead of using an N2 neighborhood of the central path, long-step path following methods generate
a sequence of iterates in the neighborhoodN−∞(γ), which, for values of γ very close to zero, occupies
most of the strictly feasible set of points F0. Such an algorithm uses fixed values σmin, σmax and
chooses σk ∈ [σmin, σmax]. The step length α is chosen as the maximum value in [0, 1] such that the
next iterate remains in the chosen neighborhood.

This algorithm is as follows:

Algorithm 4 Long-Step Path-Following Algorithm

Given: γ ∈ (0, 1), 0 < σmin < σmax < 1, and some (x0,λ0, s0) ∈ N−∞(γ)
for k = 0, 1, 2... do

choose σk ∈ [σmin, σmax]
solve equations in (3.5) to obtain search directions px,pλ,ps

choose αk ∈ (0, 1] such that:

maximize α (4.10a)

subject to (xk(α),λk(α), sk(α)) ∈ N−∞(γ) (4.10b)

(xk+1,λk+1, sk+1)← (xk,λk, sk) + α(px,pλ,ps)
end for

Again, we can derive satisfactory analytic bounds for α using equations (4.10). It can be shown
that if the current iterate (x,λ, s) ∈ N−∞(γ), then for all α such that

α ∈
[
0, 23/2γ

1− γ
1 + γ

σk
n

]
(4.11)

we obtain (xk(α),λk(α), sk(α)) ∈ N−∞(γ) (Wright, 1997, Theorem 5.11).

If the starting point µ0 ∈ N−∞(γ) such that, for some ε > 0, µ0 ≤ 1/εκ (given some positive
constant κ), then this algorithm takes K = O(n log 1/ε) iterations to reach µk ≤ ε for all k ≥ K
(Wright, 1997, Theorem 5.12).

The bounds on σ in this algorithm ensure that each search direction moves off the boundary of
the chosen neighborhood into its interior. Thus, small steps along the search direction improve
centrality, but larger steps eventually move outside the neighborhood. The bounds on α in (4.11)
guarantee that a certain minimum step length before which we reach the boundary of the neigh-
borhood. However, while this algorithm is more closely related to practical implementations, the
complexity bound is worse.

9

4.3 Convergence of Path-Following Algorithms

For each of the algorithms we have discussed, we have shown that given some ε > 0, if the initial
value of the duality measure is in the chosen neighborhood, that is, µ0 ∈ Np(θ), then there exists
some positive integer K such that µk ≤ ε for all k ≥ K. This is the same as saying:

µk → 0 (4.12)

Consider some subsequence K of (xk,λk, sk), such that:

lim
k∈K

(xk,λk, sk) = (x,λ, s) (4.13)

Since we restrict each term in K to a chosen neighborhood, we know for all k ∈ K that:

(xk,λk, sk) ∈ F0

This indicates that we obtain a subsequence of iterates all of which satisfy:

Axk = b, ATλk + sk = c, (xk, sk) > 0 (4.14)

Note that since µk = xT s/n, we can conclude that at a limit point of K, we would arrive at the
following conditions:

Ax = b, ATλ+ s = c, (x, s) > 0, xT s = 0 (4.15)

Since these match the KKT conditions as defined in (1.2), we can prove that the path-following
interior-point algorithms we have discussed in section 4.2 all converge to the solution of the primal-
dual linear program.

5 Infeasible Starting Points

The algorithms we have discussed so far require that we have feasible starting points. Choice of
the starting point is a very important issue as it has effects on the robustness of the algorithm.
However, it is often hard to find a point which is contained within the strictly feasible set F0;
there exist some valid linear program where this set is empty (Wright, 1997, Chapter 6). While
there are several methods to overcome such a problem by reformulation of the linear program, etc.,
we will now discuss variants of the Long-Step Path-Following Algorithm (Section 4.2.3) and the
Predictor-Corrector algorithm (Section 4.2.2) which do not require a strictly feasible starting point.

5.1 Infeasible-Path-Following Algorithm

This algorithm is very similar to algorithms used in practice. The steps in this algorithm are
obtained by solving the following variant of the Newton equations discussed in (3.5): 0 AT I

A 0 0
S 0 X

px

pλ

ps

 =

 −rc
−rb

−rxs + σµe

 (5.1)

10

where, as usual, rc = ATλ+ s− c, rb = Ax− b, and rxs = XSe.

This algorithm restricts iterates to an extension of the N−∞(γ) such that each iterate generated
is infeasible and the limit is both feasible and optimal. This extended neighborhood is defined as
follows:

N−∞(γ, β) =

{
(x,λ, s)

∣∣∣∣∣ ||(rb, rc)|| ≤ βµ ||(r(0)b , r
(0)
c)||

µ0
, (x, s) > 0, xisi ≥ γµ ∀i

}
(5.2)

where γ ∈ (0, 1) and β ≥ 1. As a result, the infeasibility of all points in this neighborhood is
uniformly bound by the duality measure µ. By forcing µk → 0, we ensure that rb → 0 and rc → 0
as k →∞.

Furthermore, we impose new conditions on the choice of the step length α which guarantee that
the amount by which constraints (3.2a) and (3.2b) are violated decrease at least as rapidly as the
duality measure and that there is a sufficient decrease in the duality measure at each step.

This algorithm is as follows:

Algorithm 5 Infeasible-Path-Following Algorithm

Given: γ ∈ (0, 1), β ≥ 1, 0 < σmin < σmax < 0.5, and some (x0,λ0, s0) ∈ N−∞(γ, β)
for k = 0, 1, 2... do

choose σk ∈ [σmin, σmax]
solve equations in (5.1) to obtain search directions px,pλ,ps

choose αk ∈ (0, 1] such that:

maximize α (5.3a)

subject to (xk(α),λk(α), sk(α)) ∈ N−∞(γ, β) (5.3b)

µk(α) ≤ (1− 0.01α)µk (5.3c)

(xk+1,λk+1, sk+1)← (xk,λk, sk) + α(px,pλ,ps)
end for

When given a feasible starting point, this algorithm mimics the behavior of the long-step path-
following algorithm as discussed in (4.2.3). This algorithm is globally convergent, wherein the

duality gap µk converges Q-linearly to 0, and the residual measure ||(r(k)b , r
(k)
c)|| converges R-linearly

to 0 (Wright, 1997, Theorem 6.1).

With some fairly general conditions on the starting point, this algorithm takes K = O(n2| log ε|)
iterations to reach µk ≤ ε for all k ≥ K (Wright, 1997, Theorem 6.2).

While this algorithm gives a basic groundwork for convergence from an infeasible starting point, it
does not converge fast enough. Nor does this algorithm have a good enough theoretical complexity
bound.

11

5.2 Potra’s Predictor-Corrector Method

Potra’s algorithm, like the infeasible-path-following algorithm utilizes a neighborhood which allows
infeasible points in order to solve the linear programming problem. For feasible starting points, this
algorithm reduces to the Mizuno-Todd-Ye predictor-corrector algorithm discussed in (4.2.2) (Potra,
1994). The predictor steps in this algorithm are obtained by solving the variant of the Newton
equations discussed in (5.1), whereas the corrector steps solve the Newton equations discussed
previously in (3.5).

5.2.1 Algorithm

We start off with the assumption that the feasible solution set F (3.1a) is nonempty, i.e., some
optimal primal-dual solution exists. In addition to this feasible solution set F , we define the ε-
approximate solution set Fε for some ε > 0 as follows:

Fε = {(x,λ, s) | ||Ax− b|| ≤ ε, ||ATλ+ s− c|| ≤ ε,xT s ≤ ε, (x, s) > 0} (5.4)

This algorithm uses a variant of the N2(θ) neighborhood defined as follows:

Nθ = {(x,λ, s) ∈ R2n+m | ||XSe− µe|| ≤ θµ, (x, s) > 0} (5.5)

Thus, this algorithm restricts the norm of the element-wise difference from the duality measure
by some multiple of the duality measure (Potra, 1994, Equation 6). Starting from some point
(x0,λ0, s0) ∈ Nθ, this algorithm produces an ε-approximate solution.

Furthermore, this algorithm depends on the two parameters θ, β which satisfy:

0 <
β2

2
√
2(1− β)

< θ < β < 1 (5.6)

These correspond to the neighborhood parameters for the predictor-corrector algorithm when the
starting point is feasible (it is easy to show that θ = 0.25 and β = 0.5 satisfy this requirement).

We also define the following measures at each step of the algorithm:

f = XkSke− µke, g = P xP se−
pT
xps

n
e (5.7)

These are use to calculate the following modified values of the inner neighborhood parameter θ:

θ0 = β2µ2
k − ||f ||2, θ1 = fTg − 1

n
pT
xpsµkβ

2, θ2 = ||g||2 −
(
1

n
pT
xps

)2

β2 (5.8)

We can define modified values of the outer neighborhood parameter as follows:

β0 =
√
8θ(1− β)− β2, β1 =

2β||P xP se||
µk

(5.9)

12

The following values are utilized when computing the step length for the predictor step:

α1 =
1

2

(
−ϕ1 +

√
ϕ2
1 + 4ϕ1

)
(5.10a)

α2 =
1

2

(
−ϕ2 +

√
ϕ2
2 + 4ϕ2

)
(5.10b)

α3 =
1

2β1

(
β2 +

√
β4 + 4β0β1

)
(5.10c)

where ϕ1, ϕ2 are defined as follows:

ϕ1 = θ0/(θ1 +
√
θ21 + θ0θ2), ϕ2 = µk

√√
8(β − θ)(1− β)/||P xP se|| (5.10d)

Algorithm 6 Potra’s Predictor-Corrector Method

Given: z0 = (x0,λ0, s0) ∈ Nθ, ψ0 = 1, parameters (θ, β)
for k = 0, 1, 2... do

solve equations in (5.1) with σ = 0 to obtain paff = (px,pλ,ps) . predictor step
compute θ0, θ1, θ2 as in equation (5.8)
if (θ21 + θ0θ2 ≤ 0) or (θ1, θ2 ≤ 0) then

α1 ← 1
else

set α1 as in equation (5.10a)
end if
if pT

xps = 0 then . orthogonal search directions
α← min{1, α1}
ẑ = zk + αpaff

else . non-orthogonal search directions
compute α2, α3 as in equation (5.10)
α← min{1, α1, α2, α3}
z = zk + αpaff

solve equations the following linear system to correct for pT
xps 6= 0 in the infeasibility case: 0 AT I

A 0 0
S 0 X

px

pλ

ps

 =

 0
0

−P xP se

 (5.11)

to obtain paff = (px,pλ,ps)
ẑ = z+ α2paff

end if
solve equations in (3.5) with σ = 1 to obtain pcor = (px,pλ,ps) . corrector step
zk+1 ← ẑ+ pcor

ψk+1 ← (1− α)ψk

end for

Here, we can see three notable steps. In addition to the predictor and corrector step, this algorithm
solves the system described in 5.11 to account for pT

xps 6= 0 in the case that the iterate is not

13

a feasible point. The predictor and corrector step, however, are the same as the Mizuno-Todd-
Ye predictor-corrector algorithm, as described previously. As a result, when the starting point is
feasible, this algorithm reduces to the Mizuno-Todd-Ye predictor-corrector algorithm, which uses
θ = 0.25, β = 0.5 (Potra, 1994, Page 388).

This algorithm is convergent globally and takes K = O(nω log ε0/ε) iterations to reach µk ≤ ε for all
k ≥ K where ω = 1/2 or 1 depending on the starting point and ε0 = max{µ0, ||r(0)b ||, ||r

(0)
c ||} (Potra,

1994, Section 3). Furthermore, this algorithm also converges quadratically from any starting point
(x0,λ0, s0) ∈ Nθ (Potra, 1994, Section 4).

5.2.2 Detecting Infeasibility with Potra’s Algorithm

At the beginning of every iteration, we check for the following termination condition:

xT
k sk ≤ ε, ||r(k)b || ≤ ε, ||r(k)c || ≤ ε (5.12)

if each of these conditions is fulfilled, we declare that our current iterate zk is an ε-approximate
solution, that is zk ∈ Fε.

It can be shown that if F is nonempty then the sequence generated by Potra’s algorithm satisfies
the following property (Potra, 1994, Lemma 3.1):

xT
0 sk + sT0 xk ≤ n(µk + µ0) +

(
1− µk

µ0

)
(xT

0 s
∗ + sT0 x

∗) (5.13)

If the set F is nonempty then the algorithm terminates in a finite number of steps given any ε > 0
with some zk ∈ Fε (Potra, 1994, Theorem 3.4).

As a result, if we have the following result at the beginning of an iteration:

xT
0 sk + sT0 xk ≥ n(µk + µ0) +

(
1− µk

µ0

)
(ρd||x0||+ ρps

T
0 x

∗) (5.14)

then there exist no (x∗,λ∗, s∗) ∈ F for which ||x∗|| ≤ ρd and ||s∗|| ≤ ρp. If the algorithm terminates,
it does so either with the conditions in (5.12), in which case it is an ε-approximate solution or it
does so eith the conditions in (5.14), in which case the problem is infeasible (Potra, 1994, Theorem
5.4).

5.3 Mehrotra’s Predictor-Corrector Algorithm

While Potra’s Predictor-Corrector Algorithm gives us plenty advantages, such as the ability to start
from an infeasible point, superlinear convergence, and polynomial time complexity, it also has some
drawbacks which make it less desirable in practice.

Potra’s algorithm solves three different linear systems, each with a different coefficient matrix in
each iteration. As a result, much of the time is spent on the linear algebra. This makes these
algorithms much slower for practical use. However, such an algorithm lays impoartant groundwork
for algorithms used in practice.

14

As we will discuss in the following section on solving the linear system, each instance wherein we
need to solve a linear system of equations requires that we compute the Cholesky decomposition of
the coefficient matrix. This primal-dual interior-point method, similar to Potra’s method, uses this
fact reuse the same factorization of a matrix multiple times in each iteration to yield information
about the affine and centering steps (Mehrotra, 1992).

A key feature of this algorithm is the reuse of the Cholesky decomposition obtained for the coefficient
matrix twice. First, we solve for an affine-scaling direction (equation (5.1) with σ = 0). Recall
the three steps which Potra’s method takes: this method combines the predictor, corrector, and
centering steps into one. The initial affine-scaling directions are used to find the centering parameter
σ in order to achieve this.

This algorithm is as follows:

Algorithm 7 Mehrotra’s Predictor-Corrector Algorithm

Given: (x0,λ0, s0)
for k = 0, 1, 2... do

solve equations in (5.1) to obtain search directions paff
x ,paff

λ ,paff
s

Compute αpri
k , αdual

k ∈ (0, 1] such that:

αpri
k = min

i:paff
xi

<0

{
−xki

pxi

}
αdual
k = min

i:paff
si

<0

{
− ski

psi

}
(5.15)

Set µaff = 1
nx(α

pri
k)T s(αdual

k)
Set σ = (µaff/µ)

3

Compute the search directions by solving the following linear system: 0 AT I
A 0 0
S 0 X

px

pλ

ps

 =

 −rc
−rb

−XSe− P xP se+ σµe

 (5.16)

Recompute αpri
k , αdual

k ∈ (0, 1] as in (6.1)
Choose η ∈ (0.9, 1] and update:

xk+1 = xk + ηαpri
k px (5.17a)

[λk+1, sk+1] = [λk, sk] + ηαdual
k [pλ,ps] (5.17b)

end for

With this algorithm, however, there is no guarantee for convergence. However, divergent cases are
rare and it converges fairly fast in other cases. Furthermore, it requires only one instance of matrix
factorization for each iteration, and also has polynomial time complexity (Mehrotra, 1992; Nocedal
& Wright, 2006). At the same time, we can also show that if a search direction computed in the
last step rectifies the infeasibility in the residuals, we would obtain:

r
(k+1)
b = (1− αpri

k)r
(k)
b , r(k+1)

c = (1− αdual
k)r(k)c (5.18)

15

This shows that there is, at least in some cases of the search direction and the points obtained in
each iteration, a reasonable decrease in the infeasibility.

5.3.1 Choosing a Starting Point

Choosing a good starting point for an algorithm is a very important task. A good starting point
leads to faster convergence for problems in general. We can modify the following popular heuristic
(Wright, 1997, Chapter 11) slightly in order to fit the requirements for this algorithm and choose a
point which satisfies:

Consider the following:

minimize
1

2
xTx subject toAx = b (5.19a)

minimize
1

2
sT s subject toATλ+ s = c (5.19b)

It can be easily shown that the solution for (x,λ, s) satisfying these equations can be written as
follows (Nocedal & Wright, 2006, Page 410):

x̃ = AT (AAT)−1b, λ̃ = (AAT)−1Ac, s̃ = c−ATλ (5.20)

Now, let:

δx = max{(−3/2)min
i
x̃i, 0}, δs = max{(−3/2)min

i
s̃i, 0} (5.21)

We compute the following intermediate values:

x̂ = x̃+ δxe, ŝ = s̃+ δse (5.22)

And obtain the starting values as follows:

x0 = x̂+
1

2

x̂T ŝ

eT s
e, s0 = ŝ+

1

2

x̂T ŝ

eTx
e, λ0 = λ̃ (5.23)

With this, we can guarantee that the initial values of x, s are not only nonnegative, but also
somewhat close to eachother, and avoiding abnormally large values within their components. As a
result, we can expect a uniform decrease in all components of the pairwise products.

6 Solving the Linear System

In any primal-dual algorithm, most of the computational effort is required in solving the linear
systems which describe the search directions. In most applications, the matrix A is large and
sparse. As such, the coefficient matrix (the Jacobian) is also large and sparse. The size of this
matrix makes the computation much harder, and thus, this must be addressed, such that we can
do this more efficiently.

16

Recall the linear system as discussed multiple times previously: 0 AT I
A 0 0
S 0 X

px

pλ

ps

 =

 −rc
−rb

−rxs + σµe

 (6.1)

by removing ps from this system, such that (since X,S are diagonal and nonsingualar):[
0 A

AT −D−2

] [
pλ

px

]
=

[
−rb

−rc + s− σµX−1e

]
(6.2a)

ps = −s+ σµX−1e−X−1Spx (6.2b)

where we have introduced:

D = S−1/2X1/2 (6.3)

This form of the step equations is known as the augmented system of step equations. Note that
here D−2 = X−1S is also diagonal and nonsingualar. As a result, can proceed to eliminate px

from the step equations as well. This gives us the normal equations, which are as follows:

AD2ATpλ = −rb +A(−S−1Xrc + x− σµS−1e) (6.4a)

ps = −rc −ATpλ (6.4b)

px = −x+ σµS−1e− S−1Xps (6.4c)

Note that when rb = 0, this system reduces to the normal equations which represent the solution to
the linear least squares problem with coefficient matrix DAT . In order to obtain the step equations,
we can apply sparse Cholesky decomposition on the matrix AD2AT and proceed. However, in the
case that the matrixAD2AT is ill-conditioned and singular, we may use modified Cholesky methods
to obtain a surrogate for the matrix AD2AT such that it differs only on the diagonal insofar as it
makes the surrogate symmetrix positive definite (Fang & Oleary, 2008).

Let the LDLT modified Cholesky decomposition of the matrix AD2AT be:

Modified-Cholesky(AD2AT) = LMLT (6.5)

We know for such a decomposition that LMLT = AD2AT +E such that (Fang & Oleary, 2008):

1. if AD2AT is sufficiently positive definite, E is very close to 0,

2. if AD2AT is not positive definite, E is not much larger that inf{||∆A||p | A+∆A � 0},

3. AD2AT +E is reasonably well-conditioned.

Thus, in the case that the coefficient matrix AD2AT is well-conditioned, the modified Cholesky
decomposition gives us this matrix, but when it is ill-conditioned, we obtain with the decomposition
a surrogate which is positive definite.

We can utilize this to solve for pλ in the following system:

(LMLT)pλ = vλ (6.6)

where vλ = −rb+A(−S−1Xrc+x−σµS−1e). We can solve this system with the following steps:

17

1. solve the system (LM1/2)y = vλ to obtain y,

2. solve the system (LM1/2)Tpλ = y to obtain pλ.

With this, we are solving a much smaller linear system than the one described in equations (6.1),
and can do so with direct sparse Cholesky decomposition algorithms.

We can extend the same technique to solve similar linear systems as in equation (5.11). This gives
us the following equations:

AD2ATpλ = −AS
−1

P xP se (6.7a)

ps = −A
Tpλ (6.7b)

px = −S−1
(P xP se+Xps) (6.7c)

Note that solving this linear system instead of one which has the form of (6.1) or (6.2) can only be
useful when the matrix A is sufficiently sparse. A good metric to check if the normal equations are
inappropriate is to check if AS−1XAT is much denser than A (Wright, 1997, Page 17). In such a
case, we can modify the normal equations appropriately.

7 Conclusions

Primal-dual interior point methods have several variants, each with their own advantages and
disadvantages. These methods provide a fast, flexible way to deal with Linear Programs, due to
the presence of their many formulations.

In this project, I primarily explored path-following primal-dual algorithms. First, I looked into some
standard algorithms from which more practically feasible algorithms can be derived. I implemented
Potra’s predictor-corrector algorithm and Mehrotra’s predictor-corrector algorithm over the course
of this project. While Mehrotra’s algorithm does not have proofs for convergence (indeed, in
some cases, the algorithm diverges), such cases are rare in practice. The speed of the algorithm’s
convergence and the marginally low cost of linear algebra in this algorithm, due to its exploitation of
the same matrix factorization multiple times in a single iteration make it a very desirable algorithm
for most practical use.

Further, I briefly discussed the usage of such matrix factorizations (like the LDLt factorization) to
more efficiently solve the linear systems which these methods used.

18

References

Fang, H.-r., & Oleary, D. P. (2008). Modified cholesky algorithms: a catalog with new approaches.

Mathematical Programming , 115 (2), 319–349.

Mehrotra, S. (1992). On the implementation of a primal-dual interior point method. SIAM Journal

on optimization, 2 (4), 575–601.

Mizuno, S., Todd, M. J., & Ye, Y. (1993). On adaptive-step primal-dual interior-point algorithms

for linear programming. Mathematics of Operations research, 18 (4), 964–981.

Monteiro, R. D., & Adler, I. (1989). Interior path following primal-dual algorithms. part i: Linear

programming. Mathematical programming , 44 (1-3), 27–41.

Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer Science & Business Media.

Potra, F. A. (1994). A quadratically convergent predictorcorrector method for solving linear

programs from infeasible starting points. Mathematical Programming , 67 (1-3), 383–406.

Wright, S. J. (1997). Primal-dual interior-point methods (Vol. 54). Siam.

19

	Introduction
	Optimality Conditions as Non-Linear Equations
	Drawbacks of Pure Newton's Method and Modifications

	Log-Barrier Terms to Modify LPs
	The Central Path
	Modified Search Directions
	A Basic Framework for Primal-Dual Interior Point Methods

	Path-Following Methods
	Central Path Neighborhoods
	Path-Following Algorithms Based on Central Path Neighborhoods
	Short-Step Path-Following Algorithm
	Predictor-Corrector Algorithm
	Long-Step Path-Following Algorithm

	Convergence of Path-Following Algorithms

	Infeasible Starting Points
	Infeasible-Path-Following Algorithm
	Potra's Predictor-Corrector Method
	Algorithm
	Detecting Infeasibility with Potra's Algorithm

	Mehrotra's Predictor-Corrector Algorithm
	Choosing a Starting Point

	Solving the Linear System
	Conclusions
	References

